
COT 6405 Introduction to Theory of
Algorithms

Topic 12. Hash tables

11/1/2016 1

• We focus on data structures in this part

– stack, linked list, queue, tree, pointer, object, …

• In particular, structures for dynamic sets

– Elements have a key and satellite data

– Dynamic sets support queries such as:

• Search(S, k), Minimum(S), Maximum(S), Successor(S, k),
Predecessor(S, k)

– They may also support modifying operations like:

• Insert(S, k), Delete(S, k)

Data Structures

2

Dictionary
• Dictionary

– is a Dynamic-set data structure for storing items
indexed using keys

– Supports operations: Insert, Search, and Delete

• Hash Tables:

– Effective way of implementing dictionaries

3

Types of Dictionaries
• A dictionary consists of key-

element pairs in which the
key is used to look up the
element

• Ordered Dictionary:
Elements stored in sorted
order by key

• Unordered Dictionary:
Elements not stored in
sorted order

Example Key Element

English

Dictionary

Word Definition

Student

Records

Student ID Rest of

record:

Name, …

Symbol

Table in

Compiler

Variable

Name

Variable’s

Address in

Memory

Lottery

Tickets

Ticket

Number

Name &

Phone

Number

Dictionary as a Function

• Given a key, return an element

Key Element
(domain: (range:

type of the keys) type of the elements)

• A dictionary is a partial function. Why?

– A function which is not defined for some of its
domain. (key is not defined)

– ‘kk’  not defined in English dictionary

5

Direct-address Tables

• Direct-address Tables are ordinary arrays

• Facilitate direct addressing

– Element whose key is k is obtained by indexing
into the k-th position of the array, e.g., A[k]

• Applicable when we can afford to allocate an
array with one position for every possible key

– i.e. when the universe of keys U is small.

• Dictionary operations can be implemented to
take O(1) time.

6

Direct-address Tables

Direct-Address-Search(T, k)

return T[k]

Direct-Address-Insert(T, x)

T[x.key]  x

Direct-Address-Delete(T, x)

T[x.key]  NIL

Time Analysis: O(1)

Space Analysis: ?

7

Direct-address Tables

Direct-Address-Search(T, k)

return T[k]

Direct-Address-Insert(T, x)

T[x.key]  x

Direct-Address-Delete(T, x)

T[x.key]  NIL

Time Analysis: O(1)

Space Analysis: O(|U|)

8

Dynamic set by Direct-address
Table

9

The drawback of Direct-addressing

• Notation:

– U is the Universe of all possible keys.

– K is the set of keys actually stored in the
dictionary.

– |K| = n

• When U is very large, |K| << |U|

– Arrays are not practical

10

Hash Table

• We use a table of size proportional to |K|:
hash tables

– Define hash functions that map keys to slots of
the hash table.

– However, we lose the direct-addressing ability.

11/1/2016 11

Hash function

• Hash function h: Mapping from Universe U to
the slots of a hash table T[0..m–1].

• h : U → {0,1,…, m–1}

– With arrays, key k maps to slot A[k].

– With hash tables, key k maps or “hashes” to slot
T[h(k)]

• h(k) is the hash value of key k

• Example of Hash Function

– h(k) = return (k mod m)

– where k is the key, and m is the size of the table
12

Issues with Hashing?

• Multiple keys can hash to the same slot:
collisions

– Design hash functions such that collisions are
minimized

– But avoiding collisions is sometimes impossible

• Must have collision-resolution techniques

13

Hash Table with Collision

Collision Resolution Scheme 1: Chaining

• The hash table is an array of
linked lists

• Insert Keys: 0, 1, 4, 9, 16, 25,
36, 49, 64, 81

Notes:

• As before, elements would
be associated with the keys

• We’re using the hash
function h(k) = k mod m

– m=10

0

1

2

3

4

5

6

7

8

9

0

1

4

9

16

25

Collision Resolution Scheme 1: Chaining

• The hash table is an array of
linked lists

• Insert Keys: 0, 1, 4, 9, 16, 25,
36, 49, 64, 81

Notes:

• As before, elements would
be associated with the keys

• We’re using the hash
function h(k) = k mod m

– m=10

0

1

2

3

4

5

6

7

8

9

0

1

4

9

16

25

36

Collision Resolution Scheme 1: Chaining

• The hash table is an array of
linked lists

• Insert Keys: 0, 1, 4, 9, 16, 25,
36, 49, 64, 81

Notes:

• As before, elements would
be associated with the keys

• We’re using the hash
function h(k) = k mod m

– m=10

0

1

2

3

4

5

6

7

8

9

0

1

4

9

16

25

36

49

Collision Resolution Scheme 1: Chaining

• The hash table is an array of
linked lists

• Insert Keys: 0, 1, 4, 9, 16, 25,
36, 49, 64, 81

Notes:

• As before, elements would
be associated with the keys

• We’re using the hash
function h(k) = k mod m

– m=10

0

1

2

3

4

5

6

7

8

9

0

1

64

9

16

25

36

49

4

Collision Resolution Scheme 1: Chaining

• The hash table is an array of
linked lists

• Insert Keys: 0, 1, 4, 9, 16, 25,
36, 49, 64, 81

Notes:

• As before, elements would
be associated with the keys

• We’re using the hash
function h(k) = k mod m

– m=10

0

1

2

3

4

5

6

7

8

9

0

81

64

9

16

25

36

49

4

1

Chaining Algorithms

Chained-Hash-Insert(T, x)

insert x at the head of list T[h(x.key)]

Chained-Hash-Search(T, k)

search for an element with key k

in list T[h(k)]

Chained-Hash-Delete(T, x)

delete x from the list T[h(x.key)]

20

Analysis of hashing with chaining

• m = hash table size

• n = number of elements in hash table

• load factor 𝛼= n/m : average number of keys per slot

• Assume each key is equally likely to be hashed into
any slot: using simple uniform hashing (SUH)

• What is the worst-case search time?

– Unsuccessful Search  we find none

– Successful Search  we find one

21

Expected time of an unsuccessful
search

Theorem: In a hash table in which collisions are resolved by
chaining, an unsuccessful search takes expected time Θ(1+𝛼)
under SUH.

Proof:

• Under the assumption of SUH, any key is equally likely to hash
to any of the m slots.

• The expected time to search unsuccessfully for a key k is the
expected time to search to the end of list T[h(k)], which is
exactly 𝛼.

• Consider compute the hash as O(1)

• Thus, the total time required is Θ(1+𝛼)

11/1/2016 22

Expected time of a successful search

Theorem: In a hash table in which collisions are
resolved by chaining, a successful search takes
time Θ(1+𝛼), on the average under SUH.

Proof: The number of elements examined
during a successful search for an element x is
one more than the number of elements that
appear before x in x’s list. (why?)

11/1/2016 23

Proof (cont’d)

• To find the expected number of elements
examined, we take the average, over the n
elements x in the table, of 1 plus the expected
number of elements added to x’s list after x
was added to the list.

11/1/2016 24

Proof (cont’d)

• Let xi denote the i-th element into the table,
for i =1 to n, and let ki= xi.key

• Define Xij = I{ h(ki)=h(kj) }. Under SUH, we
have Pr{ h(ki)=h(kj) } = 1/m = E[Xij] (why?)

11/1/2016 25

Proof (cont’d)

11/1/2016 26

1 1 1 1

1 1 1

2

1 1
E[(1)] (1 E[])

n

1 1 1
(1) 1 ()

1 (1

(2) (1).
2

) 1
1 () 1 1

2 2 2

2

2

n n n n

ij ij

i j i i j i

n n n

i j i i

X X
n

n i
n m mn

n n n
n

mn m n

n

 


 

     

   

  

  

  

 

 
      

  



   

  

W

Collision Resolution Scheme 2:
Open addressing

• No list and no element stored outside the
table

– If a collision occurs, try alternate cells until empty
cell is found.

– Pro: No pointers!

• Advantage: avoid pointers, potentially yield
fewer collisions and faster retrieval

– Extra memory freed from storing pointers more
hash slots  less collisions!

27

Common Probing Sequence
• Assume uniform hashing

• Collision Resolution Strategies for open address

– Linear Probing

– Quadratic Probing

– Double Hashing

• We try cells h(k,0), h(k,1), h(k,2), …, h(k, m-1)

– where h(k,i) = (h(k) + f(i)) mod m, with f(0) = 0

– Function f is the collision resolution strategy

– Function h is the original hash function.

28

Probe sequence
– Given function h()

– For every k, the probe sequence

is a permutation of

• A sequence of m slots

– How about deletion?

– Deletion from an open-address hash table is difficult

• We can NOT simply mark one cell is empty!

• Thus chaining is more common when keys must be
deleted.

29

   : 0,1, , 1 0,1, , 1h U m m   L L

     ,0 , ,1 , , , 1h k h k h k mL

0,1, , 1mL

Open addressing insertion

11/1/2016 30

Hash-Insert (T, k)

i 0

repeat

j  h(k, i)

if T[j] == NIL

then T[j]  k

return j

else i i + 1

until i = m

error “hash table overflow”

Open addressing search

11/1/2016 31

Hash-Search(T, k)
i 0
repeat

j  h(k, i)
if T[j] == k

then return j
i i + 1

until T[j] = NIL or i = m
return NIL

Linear Probing

• Function f is linear, e.g., f(i) = i

• h(k, i) = (h(k) + i) mod m
– Offsets: 0, 1, 2, …, m-1

– Only probe m slots

• With H = h(k), we try the following cells
with wraparound:

H, H + 1, H + 2, H + 3, …

• What does the table look like after the
following insertions? (assume h’(k) = k mod
m)

• Insert Keys: 0, 1, 4, 9, 16, 25, 36, 49, 64, 81

0

1

2

3

4

5

6

7

8

9

Linear Probing

• Function f is linear, e.g., f(i) = i

• h(k, i) = (h(k) + i) mod m
– Offsets i: 0, 1, 2, …, m-1

– Only probe m slots

• With H = h(k), we try the following cells
with wraparound:

H, H + 1, H + 2, H + 3, …

• What does the table look like after the
following insertions? (assume h’(k) = k mod
m)

• Insert Keys: 0, 1, 4, 9, 16, 25, 36, 49, 64, 81

0

1

2

3

4

5

6

7

8

9

0

1

49

81

4

25

16

36

64

9

Issue: Primary Clustering

• Linear Probing is easy to implement, but it
suffers from the problem of primary clustering

– i.e., the tendency to create long sequences of
filled slots

• If two keys have the same initial probe
position, then their probe sequences are the
same.

• As more elements are inserted into the hash
table, the probing sequences get longer

– Consequently, the average search time increases

– O(1) to O(n) 34

Collision Resolution Comparison

Advantages? Disadvantages?

Chaining O(1) insertion,
O(1+) deletion

pointers

Linear Probing no pointers primary clustering

Quadratic Probing

• Function f is quadratic: f(i) = i2

• h(k, i) = (h(k) + i2) mod m
– Offsets: 0, 1, 4, 9, …

• With H = h(k), we try the following cells
with wraparound:

• H, H + 12, H + 22, H + 32 …
– A sequence of m slots

• Insert Keys: 10, 23, 14, 9, 16, 25, 36, 44, 33

0

1

2

3

4

5

6

7

8

9

Quadratic Probing

• Function f is quadratic: f(i) = i2

• h(k, i) = (h(k) + i2) mod m
– Offsets: 0, 1, 4, 9, …

• With H = h(k), we try the following cells
with wraparound:

• H, H + 12, H + 22, H + 32 …
– A sequence of m slots

• Insert Keys: 10, 23, 14, 9, 16, 25, 36, 44, 33

0

1

2

3

4

5

6

7

8

9

10

33

23

14

25

16

36

44

9

Secondary Clustering

• Quadratic Probing suffers from a milder form
of clustering called secondary clustering

• As with linear probing, if two keys have the
same initial probe position, then their probe
sequences are the same

– since h(k1,0) = h(k2,0) implies h(k1,i) = h(k2,i).

• Therefore, clustering can occur around the
probe sequences.

39

Double Hashing
• If a collision occurs when inserting, apply a second

auxiliary hash function, h2(k)

– We then probe at a distance: h2(k), 2 * h2(k), 3 * h2(k), etc.,
until find empty position.

• So, f(i) = i * h2(k), and we have two auxiliary
functions:

– h(k, i) = (h1(k) + i * h2(k)) mod m

• With H = h1(k), we try the following cells in

sequence with wraparound:
– H, H + 1 * h2(k), H + 2 * h2(k), H + 3 * h2(k)

11/1/2016 40

41

 h(k, i) = (h1(k) + i * h2(k)) mod m

 h(14,0) = (14 mod 13 + 0) mod 13= 1

 h(14,1) = (14 mod 13 +

1 * (1+14 mod 11)) mod 13= 5

 h(14,2) = (14 mod 13 +

2 * (1+14 mod 11)) mod 13= 9

Double Hashing

• h(k1,0) = h(k2,0), h(k1,i) ≠h(k2,i),

– h(k1,i) = (h1(k1) + i*h2 (k1)) mod m

– h(k2,i) = (h1(k2) + i*h2 (k2)) mod m

– Even if the initial probe of k1 is equal to that of k2 ,
their following probes are random and not the
same.

• It is one of the best methods available for open
addressing, because the produced permutations are
close to randomly chosen permutations. Doesn’t
suffer from primary or secondary clustering

11/1/2016 42

Analysis of open-addressing
hashing

• m = hash table size

• n = number of elements in hash table

• load factor 𝛼= n/m : average number of keys per slot

• Theorem: Given an open-address hash table with
load factor 𝛼= n/m < 1, the expected number of
probes in an unsuccessful search is at most 1/(1-𝛼),
assuming uniform hashing.

– unsuccessful search every probe but the last
accesses an occupied slot that does not contain
the desired key, and the last slot probed is empty.

43

Proof
• Define random variable X to be the number of

probes made in an unsuccessful search.

• Define Ai: the event that there is an i-th probe
and it is to an occupied slot.

• Then, the event {X ≥ i} is the intersection of

44

   

     

 

1 2 1

1 2 1 3 1 2

1 1 2 2

Pr Pr

 Pr Pr | Pr |

 Pr |

i

i i

X i A A A

A A A A A A

A A A A



 

    

    

   

L

K

L

 1Pr
n

A
m



  1 2 1iX i A A A     L

– Given that the first i-1 probes were to occupied slots

– n-(i-1) occupied elements in the hash table haven’t
been probed and there are a total of m-(i-1) slots to be
explored

– The probability that there is a i-th probe to an occupied
slot is (n-(i-1))/(m-(i-1))

45

Proof (Cont’d)

1 1

1

1 1 0

1 2
Pr[]

1 2

 ()

1
[] Pr[]

1

i i

i i

i i i

n n n i
X i

m m m i

n

m

E X X i



 


 

  


  

  
   

  

 

    


  

L n<m, (n-i)/(m-i) ≤ n/m
for all 0 ≤ i< n.

Easy to estimate

• Load factor 𝛼= 0.5

• We need 1/(1-0.5) = 2 probes on average for
unsuccessful search

• Load factor 𝛼= 0.9

• We need 1/(1-0.9) = 10 probes on average for
unsuccessful search

46

Corollary
Corollary: Inserting an element into an open-

addressing hash table with load factor α
requires at most 1/(1- α) probes on

average, assuming uniform hashing.

• Proof

– We first find the empty slot via an

unsuccessful search

– Then insert the key

– The expected number of probes is at most

1/(1- α)
47

Proof (cont’d)

• Theorem: Given an open-address hash table
with load factor α<1, the expected number of
probes in a successful search is at most

– assuming uniform hashing

– each key in the table is equally likely to be
searched for.

11/1/2016 48

 1

1
ln

1

Proof (Cont’d)
• Suppose we search for a key k.

– If k is the (i+1)-st key inserted into the hash table, at the
time when inserted k, i slots in the hash table had been
already occupied,

– The corresponding load factor αi is i/m

– According to the Corollary, Inserting k into the hash table
with load factor αi requires at most 1/(1- αi) probes on

average,

– A search for a key k follows the same probe sequence as
was followed when k was inserted. Thus, the expected
number of probes made in a search for k is at most 1/(1-
αi) = 1/(1-i/m) = m/(m-i)

11/1/2016 49

Proof (Cont’d)

11/1/2016 50

 
























1

1
ln

1
ln

1111

11

1

1

0

1

0

nm

m

x

dx

k

imn

m

im

m

n
m

nm

m

nmk

n

i

n

i

Averaging over all n keys in the hash table gives us the

average number of probes in a successful search

Collision Resolution Comparison:
Expected Number of Probes in Searches

load factor α = n/m

Unsuccessful

Search

Successful

Search

Chaining 1+α

(1 + average number

of elements in chain)

1 + α/2 - α/(2n)

(1 + average

number before

element in chain)

Open

Addressing

(assuming

uniform hashing)

1 / (1 – α)

 1

1
ln

1

