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• We focus on data structures in this part

– stack, linked list, queue, tree, pointer, object, …

• In particular, structures for dynamic sets

– Elements have a key and satellite data

– Dynamic sets support queries such as:

• Search(S, k), Minimum(S), Maximum(S), Successor(S, k), 
Predecessor(S, k)

– They may also support modifying operations like:

• Insert(S, k), Delete(S, k)

Data Structures
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Dictionary
• Dictionary 

– is a Dynamic-set data structure for storing items 
indexed using keys

– Supports operations: Insert, Search, and Delete

• Hash Tables:

– Effective way of implementing dictionaries
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Types of Dictionaries
• A dictionary consists of key-

element pairs in which the 
key is used to look up the 
element

• Ordered Dictionary:  
Elements stored in sorted 
order by key

• Unordered Dictionary: 
Elements not stored in 
sorted order  

Example Key Element
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Records
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Dictionary as a Function

• Given a key, return an element

Key Element
(domain:                        (range:           

type of the keys)             type of the elements)

• A dictionary is a partial function.  Why?

– A function which is not defined for some of its 
domain. (key is not defined)

– ‘kk’  not defined in English dictionary
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Direct-address Tables

• Direct-address Tables are ordinary arrays

• Facilitate direct addressing

– Element whose key is k is obtained by indexing 
into the k-th position of the array, e.g., A[k]

• Applicable when we can afford to allocate an 
array with one position for every possible key

– i.e. when the universe of keys U is small.

• Dictionary operations can be implemented to 
take O(1) time.
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Direct-address Tables

Direct-Address-Search( T, k )

return T[k]

Direct-Address-Insert( T, x )

T[ x.key ]  x

Direct-Address-Delete( T, x )

T[ x.key ]  NIL 

Time Analysis: O(1)

Space Analysis:  ?
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Direct-address Tables

Direct-Address-Search( T, k )

return T[k]

Direct-Address-Insert( T, x )

T[ x.key ]  x

Direct-Address-Delete( T, x )

T[ x.key ]  NIL 

Time Analysis: O(1)

Space Analysis:  O(|U|)
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Dynamic set by Direct-address 
Table
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The drawback of Direct-addressing

• Notation:

– U  is the Universe of all possible keys.

– K is the set of keys actually stored in the 
dictionary.

– |K| = n

• When U is very large, |K| << |U|

– Arrays are not practical

10



Hash Table

• We use a table of size proportional to |K|: 
hash tables

– Define hash functions that map keys to slots of 
the hash table.

– However, we lose the direct-addressing ability.
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Hash function

• Hash function h: Mapping from Universe U to 
the slots of a hash table T[0..m–1].

• h : U → {0,1,…, m–1}

– With arrays, key k maps to slot A[k].

– With hash tables, key k maps or “hashes” to slot 
T[ h(k) ]

• h(k) is the hash value of key k

• Example of Hash Function

– h( k )  = return (k mod m)

– where k is the key, and  m is the size of the table
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Issues with Hashing?

• Multiple keys can hash to the same slot: 
collisions

– Design hash functions such that collisions are 
minimized

– But avoiding collisions is sometimes impossible

• Must have collision-resolution techniques
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Hash Table with Collision



Collision Resolution Scheme 1: Chaining

• The hash table is an array of 
linked lists

• Insert Keys: 0, 1, 4, 9, 16, 25, 
36, 49, 64, 81

Notes:

• As before, elements would 
be associated with the keys

• We’re using the hash 
function  h(k) = k mod m

– m=10
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Collision Resolution Scheme 1: Chaining

• The hash table is an array of 
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Collision Resolution Scheme 1: Chaining

• The hash table is an array of 
linked lists
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Collision Resolution Scheme 1: Chaining

• The hash table is an array of 
linked lists

• Insert Keys: 0, 1, 4, 9, 16, 25, 
36, 49, 64, 81

Notes:
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Chaining Algorithms

Chained-Hash-Insert( T, x )

insert x at the head of list T[ h(x.key) ]

Chained-Hash-Search( T, k ) 

search for an element with key k 

in list T[ h(k) ]

Chained-Hash-Delete( T, x )

delete x from the list T[ h(x.key) ]
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Analysis of hashing with chaining

• m = hash table size

• n = number of elements in hash table 

• load factor 𝛼= n/m : average number of keys per slot

• Assume each key is equally likely to be hashed into 
any slot: using simple uniform hashing (SUH)

• What is the worst-case search time?

– Unsuccessful Search  we find none

– Successful Search  we find one
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Expected time of an unsuccessful 
search

Theorem: In a hash table in which collisions are resolved by 
chaining, an unsuccessful search takes expected time  Θ(1+𝛼) 
under SUH.

Proof:

• Under the assumption of SUH, any key is equally likely to hash 
to any of the m slots.

• The expected time to search unsuccessfully for a key k is the 
expected time to search to the end of list T[h(k)], which is 
exactly 𝛼.

• Consider compute the hash as O(1)

• Thus, the total time required is Θ(1+𝛼) 
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Expected time of a successful search

Theorem: In a hash table in which collisions are    
resolved by chaining, a successful search takes 
time  Θ(1+𝛼), on the average under SUH.

Proof: The number of elements examined 
during a successful search for an element x is 
one more than the number of elements that 
appear before x in x’s list. (why?)
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Proof (cont’d)

• To find the expected number of elements 
examined, we take the average, over the n 
elements x in the table, of 1 plus the expected 
number of elements added to x’s list after x 
was added to the list.
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Proof (cont’d)

• Let xi denote the i-th element into the table, 
for i =1 to n, and let ki= xi.key

• Define Xij = I{ h(ki)=h(kj) }.   Under SUH, we 
have Pr{ h(ki)=h(kj) } = 1/m = E[Xij ] (why?)
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Proof (cont’d)
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Collision Resolution Scheme 2: 
Open addressing

• No list and no element stored outside the 
table

– If a collision occurs, try alternate cells until empty 
cell is found. 

– Pro: No pointers!

• Advantage: avoid pointers, potentially yield 
fewer collisions and faster retrieval

– Extra memory freed from storing pointers more 
hash slots  less collisions!
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Common Probing Sequence
• Assume uniform hashing

• Collision Resolution Strategies for open address

– Linear Probing

– Quadratic Probing

– Double Hashing

• We try cells h(k,0), h(k,1), h(k,2), …, h(k, m-1)   

– where h(k,i) = ( h(k) + f(i) ) mod m, with f(0) = 0

– Function f is the collision resolution strategy 

– Function h is the original hash function.
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Probe sequence
– Given function h()

– For every k, the probe sequence 

is a permutation of

• A sequence of m slots

– How about deletion?

– Deletion from an open-address hash table is difficult

• We can NOT simply mark one cell is empty!

• Thus chaining is more common when keys must be 
deleted.
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Open addressing insertion
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Hash-Insert ( T, k )

i 0

repeat

j  h( k, i ) 

if T[ j ] == NIL

then T[ j ]  k

return j

else i i + 1

until i = m

error “hash table overflow”



Open addressing search
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Hash-Search( T, k )
i 0
repeat

j  h( k, i )
if T[ j ] == k

then return j
i i + 1

until T[ j ] = NIL or i = m
return NIL



Linear Probing

• Function f is linear, e.g., f(i) = i

• h( k, i ) = ( h(k) + i ) mod m
– Offsets: 0, 1, 2, …, m-1

– Only probe m slots

• With H = h( k ), we try the following cells 
with wraparound: 

H,  H + 1,  H + 2, H + 3, …

• What does the table look like after the 
following insertions? (assume h’(k) = k mod 
m)

• Insert Keys: 0, 1, 4, 9, 16, 25, 36, 49, 64, 81
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Linear Probing

• Function f is linear, e.g., f(i) = i

• h( k, i ) = ( h(k) + i ) mod m
– Offsets i: 0, 1, 2, …, m-1

– Only probe m slots

• With H = h( k ), we try the following cells 
with wraparound: 

H,  H + 1,  H + 2, H + 3, …

• What does the table look like after the 
following insertions? (assume h’(k) = k mod 
m)

• Insert Keys: 0, 1, 4, 9, 16, 25, 36, 49, 64, 81
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Issue: Primary Clustering

• Linear Probing is easy to implement, but it 
suffers from the problem of primary clustering   

– i.e., the tendency to create long sequences of 
filled slots

• If two keys have the same initial probe 
position, then their probe sequences are the 
same.

• As more elements are inserted into the hash 
table,  the probing sequences get longer

– Consequently, the average search time increases

– O(1) to O(n) 34



Collision Resolution Comparison 

Advantages? Disadvantages?

Chaining O(1) insertion, 
O(1+ ) deletion

pointers

Linear Probing no pointers primary clustering



Quadratic Probing

• Function f is quadratic:  f(i) = i2

• h(k, i) = ( h(k) + i2) mod m
– Offsets:  0, 1, 4, 9, … 

• With H = h( k ), we try the following cells 
with wraparound: 

• H, H + 12, H + 22, H + 32 …
– A sequence of m slots

• Insert Keys: 10, 23, 14, 9, 16, 25, 36, 44, 33 
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Quadratic Probing

• Function f is quadratic:  f(i) = i2

• h(k, i) = ( h(k) + i2) mod m
– Offsets:  0, 1, 4, 9, … 

• With H = h( k ), we try the following cells 
with wraparound: 

• H, H + 12, H + 22, H + 32 …
– A sequence of m slots

• Insert Keys: 10, 23, 14, 9, 16, 25, 36, 44, 33 
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Secondary Clustering

• Quadratic Probing suffers from a milder form 
of clustering called secondary clustering 

• As with linear probing, if two keys have the 
same initial probe position, then their probe 
sequences are the same

– since h(k1,0) = h(k2,0) implies h(k1,i) = h(k2,i).

• Therefore, clustering can occur around the 
probe sequences.    
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Double Hashing
• If a collision occurs when inserting, apply a second 

auxiliary hash function, h2(k)

– We then probe at a distance: h2(k), 2 * h2(k), 3 * h2(k), etc.,  
until find empty position.

• So, f(i) = i * h2(k), and we have two auxiliary 
functions:

– h( k, i ) = ( h1(k) + i * h2(k) ) mod m

• With H = h1( k ), we try the following cells in 

sequence with wraparound: 
– H,  H + 1 * h2(k), H + 2 * h2(k), H + 3 * h2(k)
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41

 h( k, i ) = ( h1(k) + i * h2(k) ) mod m

 h(14,0) = (14 mod 13 + 0 ) mod 13= 1

 h(14,1) = (14 mod 13 + 

1 * (1+14 mod 11) ) mod 13= 5

 h(14,2) = (14 mod 13 + 

2 * (1+14 mod 11) ) mod 13= 9



Double Hashing

• h(k1,0) = h(k2,0), h(k1,i) ≠h(k2,i), 

– h(k1,i) = (h1(k1) +  i*h2 (k1) ) mod m

– h(k2,i) = (h1(k2) +  i*h2 (k2) ) mod m

– Even if the initial probe of k1 is equal to that of k2 , 
their following probes are random and not the 
same. 

• It is one of the best methods available for open 
addressing, because the produced permutations are 
close to randomly chosen permutations. Doesn’t 
suffer from primary or secondary clustering 
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Analysis of open-addressing 
hashing

• m = hash table size

• n = number of elements in hash table 

• load factor 𝛼= n/m : average number of keys per slot

• Theorem: Given an open-address hash table with 
load factor 𝛼= n/m < 1, the expected number of 
probes in an unsuccessful search is at most 1/(1-𝛼), 
assuming uniform hashing.

– unsuccessful search every probe but the last 
accesses an occupied slot that does not contain 
the desired key, and the last slot probed is empty.
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Proof
• Define random variable X to be the number of 

probes made in an unsuccessful search.

• Define Ai: the event that there is an i-th probe 
and it is to an occupied slot.

• Then, the event {X ≥ i} is the intersection of 
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– Given that the first i-1 probes were to occupied slots 

– n-(i-1) occupied elements in the hash table haven’t 
been probed and there are a total of  m-(i-1) slots to be 
explored

– The probability that there is a i-th probe to an occupied 
slot is  (n-(i-1))/(m-(i-1))  
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Easy to estimate

• Load factor 𝛼= 0.5

• We need 1/(1-0.5) = 2 probes on average for 
unsuccessful search

• Load factor 𝛼= 0.9

• We need 1/(1-0.9) = 10 probes on average for 
unsuccessful search
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Corollary
Corollary: Inserting an element into an open-

addressing hash table with load factor α
requires at most 1/(1- α) probes on 

average, assuming uniform hashing.

• Proof 

– We first find the empty slot via an 

unsuccessful search

– Then insert the key

– The expected number of probes is at most 

1/(1- α) 
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Proof (cont’d)

• Theorem: Given an open-address hash table 
with load factor α<1, the expected number of 
probes in a successful search is at most 

– assuming uniform hashing 

– each key in the table is equally likely to be 
searched for.
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Proof (Cont’d)
• Suppose we search for a key k.

– If k is the (i+1)-st key inserted into the hash table, at the 
time when inserted k, i slots in the hash table had been 
already occupied, 

– The corresponding load factor αi is i/m

– According to the Corollary, Inserting k into the hash table 
with load factor αi requires at most 1/(1- αi ) probes on 

average,

– A search for a key k follows the same probe sequence as 
was followed when k was inserted. Thus, the expected 
number of probes made in a search for k is at most 1/(1-
αi) = 1/(1-i/m) = m/(m-i) 
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Proof (Cont’d)
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Averaging over all n keys in the hash table gives us the 

average number of probes in a successful search



Collision Resolution Comparison:  
Expected Number of Probes in Searches

load factor α = n/m

Unsuccessful 

Search 

Successful 

Search

Chaining 1+α

(1 + average number 

of elements in chain)

1 + α/2 - α/(2n)

(1 + average 

number before 

element in chain)

Open 

Addressing

( assuming 

uniform hashing )

1 / (1 – α)
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